
Final take-home: Topics in Modern Mathematical
Physics II
Finish either Problem 1 or 2, and I will grade accordingly. DUE 1/21 5:00pm.

You can send your solutions to me by email, either directly (b-fang@bicmr.pku.edu.cn) or in
Courseworks. I will reply within 12 hours to confirm that I have received your submission.

Throughout, work on , assume stability , and use the convention

Problem 1 (String and dilaton equations)
Let  be the map forgetting the last marking and stabilizing.

1. Prove the string equation

and show that

2. Prove the dilaton equation

and show that
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Problem 2 (Ribbon graphs / arc complex for )

Consider the arc systems on a genus-  surface with two punctures and dual ribbon graphs. The top
cells of the corresponding ribbon-graph decomposition of the moduli have trivalent ribbon graphs with

, .

1. What is the number of vertices, edges, and faces of such a trivalent ribbon graph?
2. Classify all such ribbon graphs.
3. Using the ribbon-graph Laplace transform identity stated as Equation 4.4 (p732) in Geometry of

Algebraic Curves II, Ch. XX for the case  and , extract
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